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Finite plasma temperature can modify the structure of the wake field, reduce the wave-breaking
field, and lead to self-trapped electrons, which can degrade the electron bunch quality in a
plasma-based accelerator. A relativistic warm fluid theory is used to describe the plasma temperature
evolution and alterations to the structure of a nonlinear periodic wave exited in a warm plasma. The
trapping threshold for a plasma electron and the fraction of electrons trapped from a thermal
distribution are examined using a single-particle model. Numerical artifacts in particle-in-cell
models that can mimic the physics associated with finite momentum spread are discussed. © 2007
American Institute of Physics. [DOI: 10.1063/1.2714022]

I. INTRODUCTION

Plasma-based accelerators are capable of supporting
large amplitude plasma waves with electric fields up to hun-
dreds of GV/m, approximately three orders of magnitude be-
yond conventional accelerators.' Previously, laser-plasma ac-
celerator experimentsz_7 have typically operated in the self-
modulated regime of the laser wake field accelerator
(LWFA). In this regime, a long (compared to the plasma
wavelength), high-power laser pulse drives a plasma wave
through a Raman or self-modulation instability. The plasma
wave amplitude grows exponentially inside the laser pulse,
via the instability, until the growth saturates nonlinearly or
electrons become trapped in the plasma wave (subsequently
damping the plasma wave due to beam loading). Experimen-
tally and numerically, significant electron trapping is found
to occur when the plasma wave amplitude surpasses a critical
threshold, often loosely referred to as wave breaking.z’L9
Uncontrolled trapping can result in the production of elec-
tron beams with near 100% energy spread, which limits the
application of these beams.

More recently, near-monoenergetic electron bunches
have been produced in laser-plasma accelerator experiments
in the 100-MeV range,&10 as well as the 1-GeV range.11 The
source of the accelerated electrons was self-trapping from the
background plasma. Narrow energy spread electron beams
were produced through control of the interaction length such
that the acceleration occurred over a dephasing length.12

To further improve the electron bunch quality and stabil-
ity, a variety of laser-triggered injection methods have been
proposed,B*l7 and controlled injection via colliding laser
pulses has been achieved experimentally.18 The next genera-
tion of plasma accelerator experiments is likely to use a two-
stage approach. The first stage would be a relatively low-
energy injector, wherein the accelerated electron bunch is
produced through self-trapping or laser-triggered injection.

a)Paper UI2 3, Bull. Am. Phys. Soc. 51, 259 (2006).
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The electron bunch would then be injected into the second
stage, which would be a “dark current free” structure that
would accelerate the bunch to high energy. A dark current
free structure refers to the structure not generating any addi-
tional accelerated electrons through any self-trapping pro-
cess. In order to assess the viability of present and future
plasma accelerator experiments, a detailed understanding and
control of self-trapping are essential.

Traditionally, fluid theories have been used to define and
analyze wave breaking (the maximum plasma wave ampli-
tude of a nonlinear traveling wave).'”** Previous hydrody-
namic wave-breaking theories in one dimension have been
carried out for plasmas in the cold limit," warm plasmas in
the nonrelativistic limit,21 and warm plasmas in the limit of
ultrarelativistic phase velocities.zz’23 The cold, relativistic
wave-breaking field"” is V2(y,—1)'?E,, where yi:l/(l
- ,pr), v,=cp, is the plasma wave phase velocity (approxi-
mately the group velocity of the driver), Ey=cmw,/e, ),
=ck,=(4mnoe*/m)""* is the plasma frequency, and ny is the
ambient electron plasma density. When the plasma wave
field approaches v2(y,—1)"?E, the cold plasma density be-
comes singular,20 indicating a breakdown of the cold fluid
model. In the ultrarelativistic phase velocity B,=1 limit, the
warm wave-breaking field was found*** to be Ey~ 674E,,
where 6 is the initial plasma temperature normalized to
mc?/ kg, with kg the Boltzmann constant. This expression for
Ey, is valid for y,6"?>1, e.g., for an ultrarelativistic (8,
=1) particle beam driver. For laser-driven plasma waves,
however, typically plasma wave phase velocities are 7y,
~ 10100 and initial plasma temperatures are fmc>~ 10 eV
(Refs. 25 and 26). Therefore, a laser-plasma accelerator typi-
cally satisfies y¢0” 2< 1 and, hence, the above expression for
Ey, does not apply. Recently, a warm, relativistic fluid theory
has been used to describe wave breaking in the regime of
interest to laser-plasma accelerators.”*

For electric-field amplitudes below the wave-breaking
field, significant electron trapping may occur in a warm
plasma. In a warm plasma, such as that characterized by a
Gaussian distribution, fast electrons may exist on the tail of
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the distribution that can have sufficiently high momenta to
allow trapping in the plasma wave. Using a test particle trap-
ping formalism, the threshold momentum for an electron to
become trapped in a plasma wave with an amplitude below
the wave-breaking limit can be calculated.”’ Consequently,
the fraction of electrons trapped from the tail of the distribu-
tion, which constitutes the dark current, can be determined.”’
Furthermore, the amount of trapping at the hydrodynamic
warm wave-breaking limit can also be determined.

In this paper, some consequences of finite temperature
on plasma-based accelerators are discussed. In Sec. II, the
results of a warm, relativistic fluid model are presented. This
model describes the evolution of the temperature in a plasma
wake field, as well as modification of the wake field due to
finite temperature. The warm wave-breaking limit for non-
relativistic plasma temperatures is presented. Section III dis-
cusses trapping and dark current with a test particle model.
Section IV discusses numerical heating and subsequent trap-
ping when modeling plasma accelerators with particle-in-cell
codes. Conclusions are given in Sec. V.

Il. WARM WAVE BREAKING

Standard warm relativistic fluid theories derived for col-
lisionally dominated plasmas (e.g., Ref. 28) are inadequate
for describing short-pulse laser-plasma interactions. Short-
pulse laser-plasma interactions access a collisionless regime
that is not in local thermodynamical equilibrium, in which
the plasma electrons experience relativistic motion while the
temperature (electron momentum spread) remains small. To
model short-pulse laser-plasma interactions, a warm relativ-
istic fluid model can be derived from the collisionless Bolt-
zmann equation.24’29 By assuming that the plasma is “warm,”
such that the phase-space distribution has a small momentum
spread about its mean, allows the hierarchy of moment equa-
tions to be treated asymptotically.zg_33 No additional assump-
tions concerning the specific form of the distribution are re-
quired for closure of the fluid equations. Assuming the
quasistatic applroximation,34 i.e., the plasma wave driver and
fluid quantities are assumed to be functions only of the co-
moving variable §=z—B,ct (where z is the driver propaga-
tion direction), the fluid equations can be combined to yield
the evolution equation for the nonlinear one-dimensional
(1D) plasma response,>*

i|: FYL(I _szwz) 4 En(l _szwz)(l _Wf)l/z
0| (1 _Wg)l/z 2’ v, (1 —ﬁ;lwz)z

=2 (1)

where 6=kgT,/mc? is the initial isotropic temperature, yi
=1+d?/2, a®=7.3X 10" N[ um]I,[W/cm?] is the normal-
ized laser intensity for a linear polarized laser pulse, A is the
laser wavelength, and [ is the laser intensity. Here w, is the
axial component of the fluid velocity given by w
=([dQfp)/(JdQfy), where f is the phase-space density, p
=13 is the normalized particle momentum, and dQ)=dp/ vy is
the invariant momentum space volume element. Linearizing
Eq. (1) yields the driven wave equation [a§+k]2’(1
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FIG. 1. Plasma density n/n, (dotted curve), plasma wave electric field
E_/E, (solid curve), and plasma temperature T/ T}, (dashed curve) excited by
a Gaussian laser pulse with normalized intensity a=2 and RMS length
k,Lrms=1 (centered at k,E=0).

+36/ 2)]wz=d§a2, for a plasma wave with relativistic phase
velocity (B,=1). In the linear regime a*<1, the dominant
thermal effect is a change in the wavelength of the 1D
plasma wave Ao =N\,(1-36/4).

In terms of the axial fluid velocity, the plasma density is
n/ny=w./(B,~w,), the electrostatic potential (normalized to
mc?le) is

_ ')/J_(l - B(pwz)

(1-Bw)1-w)" 3
¢= (1-w?)1? Py

F)’L(l _B;lwz)z 2

3/\
+ -0
2

(2)

the electric field is EZ/EO:—kljl&ggb(wz), and kgT/mc?=(1
—w?)(l— B;lwz)‘zﬁ is the plasma temperature [measure of
thermal spread given by the contraction of the momentum
variance tensor, kpT/mc>=U"U w— 1, with the hydrodynamic
four momentum given by U*=(fdQfp*)/(fdQf)] (Ref. 24).
The warm fluid approximation assumes kgT/mc*<1 (i.e.,
nonrelativistic temperatures). Figure 1 shows the plasma
density n/n, (dotted curve), plasma wave electric field E./E
(solid curve), and plasma temperature T/T, (dashed curve)
excited by a Gaussian laser pulse a=a, exp(-&/4Lays) With
normalized peak intensity ay=2 and intensity RMS length
k,Lrms=1. The plasma temperature undergoes periodic 0s-
cillations in the wake owing to compression of the plasma
density.29 Note that the temperature evolution (to lowest or-
der in the small parameter kgT/mc><1) is given by T
=[(n/ no)z(l—wf)]To. The temperature evolution can be
evaluated using the warm plasma approximation and does
not require the choice of a specific distribution, in contrast to
the claims of Ref. 35.

The warm fluid model can be used to determine the

maximum field amplitude EmaX=EmaX/ E, of a nonlinear pe-
riodic plasma wave with phase velocity B, excited in a
plasma with initial temperature 6, i.e., the warm wave-
breaking field,**
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where

Xo= Yol = B+

+9B826) "2 + [60B%(1092 192 + 3826)
+ 28,217, + 3B,0) 480y, v, + 9B,67) 7]}
)

Here xo=(1-w,)/(1 —wf)”2 is the extrema of the fluid mo-
mentum in the comoving frame. The maximum density per-
turbation is given by (n/ng)max=[1 —,8;1(1 -x)/(1+x3)T,
which does not become singular in contrast to the cold fluid
theories'**° (i.e., there is no shock formation). Furthermore,
the absence of a singularity indicates that the fluid model
remains valid, i.e., there is no breakdown of the fluid model
at (or before) the wave-breaking limit (contrary to the claims
of Ref. 35). For wave amplitudes larger than Eq. (3), no
traveling wave solutions to the fluid equations exist. At the
warm hydrodynamic wave-breaking limit, the amplitude of
the force due to thermal pressure and the space-charge force
are equal. The peak plasma temperature at the maximum
plasma wave amplitude occurs at the point of maximum
compression and is given by (kgT/mc?)nu=40x3L(1+x3)

- ,8‘ (1- )(2)]‘2 For a typical laser-plasma accelerator ex-
periment, y,~ 10-100, y, ~ 1, and 6mc*~10 eV (Refs. 25
and 26). In this regime 6< yi/yz<1 and the maximum
temperature  to  leading order is  (kgT/mc?) .
= ‘yl(y(zpﬁl?a)”z[l -3 'y<2p0/3)”2/(4yl)] <1, which confirms
the validity of the warm plasma approximation at the maxi-
mum plasma wave amplitude.

If the temperature becomes relativistic, the asymptotic
expansion used above will no longer be valid. For relativistic
temperatures, the higher-order moments of the distribution
will be important and will be a function of the specific form
of the phase-space distribution. Note that choice of an un-
physical distribution (e.g., water bag) may lead to singular
(unbounded) solutions. These singularities are not physical
(as speculated in Ref. 35), but the result of the choice of an
unphysical phase-space distribution. It should also be noted
that for sufficiently large (or singular) density, the collision-
less plasma model will no longer be valid.

In the cold plasma limit (#=0), Eq. (3) reduces to

max(ﬁ 0)=27y,(y,~1). This is a g:{enerallzatlon24 27 of the
cold relativistic wave-breaking field""* to include the pres-
ence of a laser field. In the regime relevant to laser-plasma
accelerator experiments, << yzl/ y(zp< 1, Eq. (3) reduces o

Gy 0" -23%0"|. (5

~y 21+ B) {3B20+ B, (48072 1,

8
E ax = 27L(7¢_ 1) — Yo g
Equation (5) is the cold relativistic wave-breaking field with
the lowest-order reduction due to the plasma temperature.
For high-intensity lasers (a>=1), Eq. (5) indicates that E,
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FIG. 2. Maximum plasma wave electric-field amplitude émaszmax/EO [Eq.
(3)] vs initial temperature 6 with y,=10 and y, =1. The dotted curve is the
ultrarelativistic result B(p: 1, and the dashed line is the cold limit.

inside a laser pulse is significantly larger compared to behind
the pulse (where a=0) (Ref. 24).

Figure 2 shows the wave-breaking field, Eq. (3), Epax
=E ./ Ey (solid curve) versus initial temperature 6 with 1y,
=10 and y, =1. The dotted curve is the ultrarelativistic result
(By=1), and the dashed line is the cold limit (#=0). Note
that for typical short-pulse laser-plasma-interactions, 6
~ 107, Figure 3(a) shows the peak density perturbation cal-
culated by solving Eq. (1) assuming a drive laser pulse with
a Gaussian longitudinal profile a=a, exp(—£*/ 4L2RMS) with a
RMS intensity pulse length of k,Lgys=1 propagating in a
plasma with density such that y,=10. As the amplitude ap-
proaches the wave-breaking limit (Sn/ng)m.=[1- B_ (1
—x0)/(1+x3)]™" =1 (dotted line), the peak density perturba-
tion is modified from the cold result. Figure 3(b) shows the
difference between the nonlinear plasma wavelengths
(AN/N,)] 0=[N5c(0=0)=No5c 1/ (ON,,) (solid curve), the peak
electric fields (AE/Ey)/6=[E,(0=0)-E_]/(0E;) (dotted
curve), and the peak electrostatic potentials A/ O0=[p(0
=0)—¢]/60 (dashed curve), assuming an initially cold
(6=0) and warm (6=107%) plasma versus drive laser ampli-
tude a, (with k,Lgys=1 and y,=10). Note that the differ-
ences plotted in Fig. 3(b) are normalized by 6. As Fig. 3(b)
indicates, the normalized potential and electric field of the
wave in a warm plasma differ from the cold result by a factor
of order ~#<1 (typically #~ 107%), and below wave break-
ing, the electric field is well modeled by the cold plasma
result for nonrelativistic initial temperatures.29 This refutes
the claims of Ref. 35 that the cold plasma response cannot be
used to approximately model the electrostatic field of a
plasma wave below wave breaking. For ay<1, [N, (6=0)
—Nosel/(6N,)=3/4 (the 1D relativistic Bohm-Gross thermal
shift in the plasma wavelength), as shown in Fig. 3(b).

lll. PARTICLE TRAPPING

The dynamics of an electron in the presence of a plasma
wave and a laser pulse is determined by the Hamiltonian in
the comoving frame,”” H=(7* +u?)'?- Bou—p(é), where u
is the electron momentum normalized to mc. Assuming the
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FIG. 3. (a) Peak density perturbation vs amplitude of drive laser a, (with
k,Lgms=1 and ,=10) for initial plasma temperature of =107 (solid
curve) and 0=0 (dashed curve). The dotted line in (a) is the wave-breaking
limit (n/ng) .~ 1 behind the drive laser for y,=10 and #=107. (b) Differ-
ences between the nonlinear plasma wavelengths (AN/\,/6) (solid curve),
between the peak electric field amplitudes (AE/E;)/ 6 (dotted curve), and
between the peak potential amplitudes A¢/ 6 (dashed curve), assuming an
initially cold (#=0) and warm (6=10"%) plasma vs drive laser amplitude a,.

quasistatic approximation, the Hamiltonian is time indepen-
dent and, therefore, a constant of motion H(u,£)=constant.
The electron momentum at any phase is

u=PByuH+ ) =y [V, (H+ ) - v 1" (6)

Equation (6) describes trapped (closed) and untrapped (open)
orbits, in which a particular orbit is specified by a particular
value of H=constant. The separatrix orbit between trapped
and untrapped orbits is given by H=H, where H,
=y, (&) v,— d(&,). Here, &, is the phase that maximizes
H(YL(&) 7<pﬁ¢’ g) Assuming 7L=Con5tantv ¢(§m)=¢min is
the minimum potential of the plasma wave.

Consider a plasma electron with initial normalized mo-
mentum u, in the absence of any fields (i.e., before the pas-
sage of the driver and excitation of the plasma wave, y,
=1 and ¢=0). The orbit of the electron will be defined by the
Hamiltonian H=H,, where H,=(1 +u,2)”2—,8¢u,. Trapping of
the electron will occur when the orbit defined by the Hamil-
tonian H, coincides with a trapped orbit, defined by the sepa-
ratrix orbit, namely, when H,< H,. For H,> H,, the electron
is on an untrapped orbit. Solving H,=H, yields in the mini-
mum initial electron momentum for trapping in the plasma

27
wave,
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FIG. 4. Initial electron momentum u, required to be trapped by a plasma
wave with field amplitude E .,/ Ey and phase velocity y,=5 (dotted curve),
7¥,=10 (solid curve), y,=20 (dashed curve), and B,=1 (dash-dotted curve),
assuming an initial plasma temperature 6=107%.

u= 7<pﬂ<p(7L - y¢¢min) - Y¢[(7L - y¢¢min)2 - 1]1/2- (7)

Equation (7) is valid for a plasma wave potential in a warm
plasma, where ¢,,;, is the extrema of the plasma wave po-
tential [solution of Eq. (1)]. Figure 4 shows the initial mo-
mentum u, required for the electron to be trapped by a

plasma wave with amplitude L%szpeak/Eo, with v, =1. In
Fig. 4 the peak electric field corresponding to the minimum

potential ¢, (E,) was solved using Eq. (1) for a warm
plasma with §=10"%. The threshold momentum required for
trapping decreases for larger plasma wave amplitude and for
lower plasma wave phase velocity. Note that trapping can
always occur, even for plasma waves with ultrarelativistic
phase velocities (8,=1); with B,=1 and y, =1, Eq. (7) re-
duces to u,=(pyin—1/ Pmin) /2.

As shown in Fig. 3(b) (and in Ref. 33) the fields are
weakly influenced by the width of the distribution,
Epeak(0)/ Eg— Epeai(0=0)/ Eg~ 6, below the wave-breaking
limit. Thus, contrary to the claims in Ref. 35, it is an excel-
lent approximation to use the cold fields when studying a
warm plasma for typical laser-plasma accelerator parameters.
For a cold plasma, the relation between the minimum poten-
tial and the field amplitude is

d)min: Y- 1 +EA‘51/2_E¢[(’)/L +E3n/2)2_ ,yi]l/Z, (8)

where Eszpeak/ E, is the normalized amplitude of the
plasma wave field. Equations (7) and (8) can be solved for
the peak field E, required for the onset of particle trapping as
a function of the initial electron momentum u, (Ref. 27),

(EJEG)? =2y, (Yo— 1) + 29,8, {u,— [(Bu,)’
+ 2IB¢M[’}/L/’}/¢]1/2}, (9)

where u, <1 (nonrelativistic initial momentum) has been as-
sumed.

Note that trapping occurs in a warm plasma in the ul-
trarelativistic phase velocity limit where the wave phase ve-
locity is equal to the speed of light v,=c (as shown in Fig.
4). For y, =1, B,=1, and u,<1, Eq. (7) yields ¢y,=~1
+u,, and, using Eq. (8), the peak field of an ultrarelativistic
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FIG. 5. Fraction of trapped electrons fiy, [Eq. (10)] vs the initial tempera-
ture of a Gaussian plasma electron distribution 6=kgTy/mc?* for three dif-
ferent nonlinear plasma wave amplitudes driven by a laser with k,Lgys=1

and ay=3.65 (E,,=1.75), ay=4.15 (E,,=2), and a,=4.75 (E,,~2.25), with
Ye=10.

plasma wave required for trapping an electron with initial
momentum u, is E,/Eozut_l/z. This result refutes the claim
of Ref. 35, that trapping cannot occur for plasma waves with
B,=1. Indeed, with B, =1, the separatrix between trapped
and untrapped particles is finite for all phases except &,
(which is never reached by a trapped particle).

Equation (7) concerns the trapping in a plasma wave of a
single plasma electron with initial momentum u,. For a ther-
mal plasma electron distribution, electrons on the tail of the
distribution function may have sufficiently high momentum
so as to reside on trapped orbits. The fraction of electrons
trapped in the plasma wave can be computed for a given
initial momentum distribution. For example, assuming an
initial Gaussian momentum distribution of the plasma elec-
trons with initial temperature 7|, defined by the RMS mo-
mentum spread (kgT,/m,)"?, with (kgTy/m,c?)'><1 [ie., a
momentum distribution of the form F(u) = exp(—u>/26)], the
fraction of trapped electrons is?’

Sueap= % erfe(u,/N\26), (10)
where u, is given by Eq. (7). Figure 5 shows the fraction of
trapped electrons versus the initial temperature of a Gaussian
plasma electron momentum distribution for three different
nonlinear plasma wave amplitudes driven by a laser with
kyLrms=1 and ag=3.65 (E,,=1.75), ag=4.15 (E,,=2), and
ap=4.75 (E, =2.25), with y,=10. Note that the plasma
wave was calculated assuming a warm plasma with tempera-
ture 6 via Eq. (1). The total number of trapped electrons (i.e.,
dark current in the plasma accelerator) can be estimated from
Eq. (10). For example, for a plasma density of n,
=10" ecm™3, driver transverse size of 7, =10 um, and accel-
erator length of 1 mm, a trapping fraction of f,,= 1073 indi-
cates ~0.1 nC of trapped charge. This trapping calculation
neglects beam loading, which implies the wake field induced
by the trapped electrons is much smaller than the primary
plasma wave, or ny,,/ny<|d|, where n,, is the density of
the trapped electron bunch.

Phys. Plasmas 14, 056707 (2007)

As the driver propagates into the plasma, more charge
will be trapped until the amplitude of the plasma wave is
substantially reduced due to beam loading. The beam loading
limit is defined as the number of accelerated electrons re-
quired to produce a wake field that cancels the accelerating
field of the plasma wave.”® The trapped bunch density is
approximately given by nj,= fy,,n0z/L,, where z is the
propagation distance and L, is the bunch length. Assuming
kabS 1, the wake field generated by the bunch is given by
Eb/EOkaLbnb/no in the 1D limit, assuming E,/Ey<<1. The
beam loading limit at which E,=E,, is then reached after a
propagation distance of ZBsz;l ft_r;pf?m. For l:?m~ 1 and
Suwap<<1, k,zg. > 1 and beam loading will only be significant
after long propagation distances.

For a given initial plasma temperature and plasma wave
phase velocity, a larger fraction of electrons become trapped
as the plasma wave amplitude increases. The particle trap-
ping model presented in this section can be used to calculate
the fraction trapped at the hydrodynamic wave-breaking
limit. Note that Eq. (9) obtained from trapping theory pro-
vides a good estimate to the hydrodynamic wave-breaking
field, Eq. (3), over Egimes of interest for laser-plasma accel-
erators, when u,=\36. For example, when y, =1, Eq. (7) can
be solved for the plasma wave potential required for trapping
an electron with initial momentum u,, i.e., ¢min='y;l—l
+B,u,, for u,<1; whereas using warm fluid theory, Eq. (2)
with w,=(1-x3)/(1+x3), the minimum potential at the
wave-breaking amplitude is ¢wg= y;' -1+ ,8¢v'3 0, assuming
0<1. These two expressions agree when u,=\36. This
shows that a significant fraction of the plasma electrons (sat-
isfying u,>\36) can. be trapped at the wave-breaking ampli-
tude: fy,p,=erfc(v3/2)/2=0.04 for an initial Gaussian mo-
mentum distribution. Note that here we have used the
potential derived from the warm fluid equations. This shows
that significant trapping occurs below the wave-breaking
limit for a physical initial electron distribution (e.g., Gauss-
ian) and refutes the claim™ that there is no trapping below
the wave-breaking limit.

The warm fluid theory of wave breaking and the trap-
ping calculation assume the quasistatic approximation that
the plasma wave is a function of only é=z-v. In general,
for the plasma wave to be a traveling wave that is a function
of only & implies that there is sufficiently small trapping and
beam loading, such that any time-dependent damping of the
plasma wave is insignificant (i.e., kszL>1, as discussed
above). At the wave-breaking amplitude, the fraction trapped
is fiap=4% assuming an initial Gaussian electron momen-
tum distribution. For example, if the beam loading estimate
discussed above is assumed to approximately apply in the
nonlinear limit, then fi,,~4% and EWB =3 imply zp
=12\, This simple estimation implies that beam loading
can lead to appreciable reduction of the plasma wave after
several plasma periods if the field amplitude approaches the
hydrodynamic wave-breaking limit.

IV. MODELING WITH PARTICLE-IN-CELL CODES

Particle-in-cell (PIC) codes™*' have been used exten-
sively to model laser-plasma-based accelerator experiments.
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FIG. 6. Macroparticle phase space at
t=15.75\,/c, with the physical param-
eters wy/w,=10, ay=2, and k,L=2,

[¢] 20

40 80 80 100 using the numerical parameters: (a)

In a particle-grid approach such as PIC, finite-sized, charged
macroparticles interact with electromagnetic fields defined
on a grid and interpolated to the macroparticle positions. The
unavoidable discretization of the physical model and the
small number of macroparticles used to represent the phase-
space distribution both give rise to unphysical heatting.m’41
These heating mechanisms include scattering42 and grid
heating.43 Numerical heating via scattering has a continuous
slow growth of momentum spread due to the finite number
of macroparticles. The growth of momentum spread depends
mainly on the number of macroparticles per cell and on the
particle shape. Grid heating43 has a fast growth rate and satu-
rates when Ap~Az in one dimension, where \p
=(kgT/47ne*)'? is the Debye length and Az the grid size.
Interpolation of the gridded field quantities to the macropar-
ticle positions leads to numerical errors in the trajectories
that appear to be qualitatively different than the trajectory
errors due to truncation in the particle integrator. These nu-
merical errors will alter the macroparticle phase space and
can mimic physical processes leading to the incorrect inter-
pretation of computational results. This will be of particular
importance when attempting to model detailed kinetic ef-
fects, such as trapping of the background electrons or gen-
eration of dark current in a plasma-based accelerator.

The effect of the unphysical heating (macroparticle mo-
mentum spread) in PIC codes is studied for the case of a
nonlinear plasma wave driven by a short laser pulse.44 For
the study described in this section, the initial normalized la-
ser intensity profile is of the form af exp(-2z%/L?) with a,
=2, k,,L:Z, and o,/ w,= 10. For a 0.8-um laser wavelength,
the plasma wavelength is 8 um (plasma number density of
1.7X 10" ¢cm™), L=2.5 um (10 fs FWHM laser intensity
duration), and peak laser intensity of 8.5 X 10'® W/cm?. The
1D simulation box is 130 um long, and the laser was
launched from the boundary of the simulation box. The num-
ber of grid points varies according to the resolution. The

k2 Az=N/36 and N,p,=400, (b) Az
=No/48 and Np,:=400, (c) Az=N,/48
40F P12 and N,,,.=100, and (d) Az=X\,/48 and
(d L P Nype=400 with a filter (Ref. 47) on the
30k ! 3 }'\,\,\4/\‘ current. The insets show a magnifica-
l i o tion of the phase space at the first (A)
o I c kpz 01 and fifth (B) buckets after the laser
E 20F i pulse.
a
10F g .
;) A
0 20 40 60 80 100
kpz

macroparticles are loaded uniformly and cold (no initial mo-
mentum), using either N,,.:=100 or N,,,;=400, where N, is
the number of macroparticles per cell. For the simulations, a
modified version of Plasma Simulation Code (PSC)* is
used, which implements the standard PIC algorithm40 and
uses a charge-conserving current-deposition scheme.*®

For this case no self-trapping in the wake is expected
because the plasma is initially cold and the wake field is
below the cold relativistic wave-breaking field, E,
<E[2(y,~1)]"%. The evolution of the plasma temperature
should follow the warm fluid model,zg’33 which predicts that
an initially cold collisionless plasma remains cold in this
regime. However, the PIC simulations show macroparticles
trapped in the wake, as seen in Fig. 6. Figure 6 shows the
macroparticle phase space (momentum versus position) at ¢
=15.75\,/ ¢ for the numerical parameters: (a) Az=X\y/36 and
Nppe=400; (b) Az=Ny/48 and N,,,:=400; (c) Az=\,/48 and
Nppe=100; and (d) Az=N(/48 and N,,.=400 with a (1,2,1)
filter (including compensator)” on the current. The insets
show a magnification of the phase space at the first (A) and
fifth (B) buckets after the laser pulse. Note that the wake
amplitude is lower in the fifth bucket compared to the first.
This is due to the laser evolution (self-steepening of the laser
pulse) resulting in a higher peak laser intensity as the laser
propagates through the plasma (this has also been confirmed
by comparison with 1D cold fluid simulations of the same
physical parameters). The insets of Fig. 6 show that, as a
function of distance behind the driver, phase space develops
an increasingly complex structure. When the plasma current
is deposited on the grid, this course graining will yield a
current which will have characteristics similar to that due to
a warm distribution. In particular this course graining will
trigger grid heating, leading to an increasingly large momen-
tum spread. As shown in Figs. 6(a)-6(c), the phase-space
structure is dependent on the resolution and number of mac-
roparticles per cell. At a resolution of Az=\,/36 the longi-
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FIG. 7. (Color) (a) Normalized mean-square momentum spread calculated
in each cell for Az=\;/36 and N,,,.=400 (black curve) and Az=\,/60 and
Nppe=400 (red curve). (b) Normalized mean-square momentum spread cal-
culated in each cell for Az=\y/48 and N,,.=400 (black curve) and Az

ppe
=N\¢/48 and N, =100 (red curve). The physical parameters are w/ ,=10,

ag=2, and ka=2.

tudinal electric field is accurately represented. Increasing the
resolution leads to very little change in the wake field, but
results in significant changes in the macroparticle phase
space. Note that for a warm initial condition, the PIC algo-
rithm has been shown, with sufficient resolution and macro-
particles per cell, to yield the correct thermal plasma
response.”

The longitudinal mean-square macroparticle momentum
spread, oﬁ:((u—(u))z), is shown in Fig. 7. In this example,
secular growth of the momentum spread occurs after the
third plasma wave bucket. Increasing longitudinal resolution
reduces the momentum spread; Fig. 7(a) shows resolutions
of Az=N\y/60 (red curve) and Az=\q/36 (black curve). In-
creasing the macroparticles per cell also reduces the momen-
tum spread; Fig. 7(b) shows N,,.=100 (red curve) and N,
=400 (black curve).

V. SUMMARY AND DISCUSSION

The performance of plasma-based accelerators can be
affected by finite plasma temperature. Finite temperatures
reduce the wave-breaking field and enhance the amount of
self-trapped electrons, thus leading to the production of dark

Phys. Plasmas 14, 056707 (2007)

current, which will degrade the accelerated electron bunch
quality. To correctly determine the temperature evolution, a
warm relativistic fluid theory has been derived and
analyzed.zg’33 The plasma temperature is found to undergo
periodic oscillations in the wake, due to adiabatic compres-
sion, but there is no secular heatting.zg’33 This is the case
since, in the underdense regime of plasma accelerators, there
are no collisions, and, in the standard wake-field case, the
plasma response is well described using the quasistatic ap-
proximation. Using a warm fluid model, an analytical result
for the maximum field amplitude of a periodic nonlinear
plasma wave (warm wave-breaking limit) was derived.”* The
warm wave-breaking limit, Eq. (3), is capable of describing
the regime of current ultraintense short-pulse laser interac-
tions with underdense plasma, in contrast to previous results
that are limited to ultrarelativistic particle drive beams. This
field amplitude is a fundamental limit on the accelerating
gradient in plasma-based accelerators.

For wake amplitudes below the wave-breaking limit, fast
particles on the tail of a thermal distribution may become
trapped. The trapping of thermal plasma electrons in a non-
linear plasma wave has been examined using a formalism
based on single-particle dynamics and the threshold electric-
field amplitude for trapping an electron with arbitrary mo-
mentum in a nonlinear plasma wave was derived.”’ This cal-
culation included the presence of a laser field, which was
found to increase the trapping threshold and, hence, reduce
the fraction of trapped electrons. The dark current, or the
fraction of electrons trapped, was calculated as a function of
initial plasma temperature, wave amplitude, and wave phase
velocity.27

Several numerical effects in PIC codes can lead to
phase-space errors, unphysical heating of the model plasma
(i.e., an unphysically large macroparticle momentum spread),
and erroneously large levels of particle trapping. Since nu-
merical heating increases with distance behind the wake
driver, this issue is worse for larger simulation boxes. For the
examples presented in Sec. IV, numerical trapping was ob-
served to occur behind the seventh period of the wake when
ag=2. For ay=3, however, numerical trapping occurred after
the first three wake periods. Care must be taken in choosing
the numerical parameters to ensure that artificial numerical
effects are sufficiently small. Although the results presented
in this paper have been limited to one dimension, this same
general behavior is observed to occur in two—dimensional
PIC simulations.** Further studies indicate that the use of
shaped macroparticles may reduce these effects, however,
numerical heating and unphysical trapping will still occur.
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